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Nonlinear aspects of analysis and synthesis of speech time series data
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In this work we study a simple model of voiced sound production. We analyze contributions that the
qualitative theory of dynamical systems can make to the analysis and synthesis of human speech.
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[. INTRODUCTION The work is organized as follows. In the second section
we review some important models accounting for vocal fold
Speech data constitute an amazing test bench for nonlirescillations. In the third section we study the simplest of
ear dynamics. From developed turbulence to relaxation oghese models in detail, discussing its range of validity and the
cillations, every classical problem studied in nonlinear dy-structure of its solutions. The fourth section is dedicated to a
namics p|ays a ro|e in the production Of human Voice'simple model for the Vocal tract f||ter The fifth SeCtion
Therefore, time series data from speech present importa§hows how to use these simple elements to synthesize human
challenges for the time series analyst. For example, selfSPeech data, and a genetic algorithm is used to properly fit
oscillations might be established in the vocal folds as paramthe model parameters. The last section discusses future work,
eters are changed, which dynamically enrich their spectra@Pplications, and conclusions.
properties, with simultaneous changes in the fundamental
frequency. Since our observations are mediated by filters, the Il. MODELS
time series can present features resembling bifurcations and '
even chaotic behavidi]. Since realistic models of the folds The construction of models of vocal folds has a long and
can indeed present bifurcations of the self-oscillations, it igich history. Basically, the vocal folds are the source of
important to know what to expect from the simplest modelsvoiced sounds. A flow induced instability of these opposed
of voice production. ligaments modulates the airflow, giving rise to a sequence of
The term voice refers only to the sounds produced bypulses that excites the vocal tract. A seminal work within this
vocal fold oscillations. In fact, a first order classification of area was done by Ishizaka and Flanag@nInterested in the
the sounds used in human speech can be made in terms foblem of achieving a realistic synthesis of voiced sounds,
whether the vocal folds oscillate or not, i.e., voiced or un-they built a very successful model of two stiffness-coupled
voiced sounds. Vowels are a typical example of voicedmasses, which is used almost 30 years after its publication
soundg 2], and in this work we will analyze dynamical as- [6]. Although the authors of this model also mention the
pects of their production. importance of understanding the critical parameters of the
The spectral content of voiced sounds is fairly simple,mechanism in order to address the diagnosis of voice disor-
displaying a discrete number of peaksrmonics of the fun- ders, it has been pointed out that the key parameters in the
damental frequency of oscillation of the vocal foldsodu-  model have been difficult to relate to anatomical feat(ués
lated by a smooth function. The classical theory accounting<eeping the simplicity of the two mass model, Story and
for this observation is known as the source filter thel@ly  Titze introduced a three mass model that allows a better con-
In this framework, the time varying flow through the glottis nection between physiological and model paramef@is
is filtered by the vocal tract. Therefore, some of the harmonThis model builds upon the work of Hirari8], who stressed
ics of the fundamental frequency are enhanced and others attge importance of understanding the vocal fold structure in
reduced, producing a rich variety of sounds. The frequenciesrder to properly explain the onset of vocal fold oscillations.
enhanced by the vocal tract are known as formants, and ifihe models if5] and[7] represent an adequate compromise
the case of the vowels the ratio between the first two deterbetween very simplified one mass modéfs which the vo-
mines them. cal folds are modeled by one mass spring driven by airflow
The study of voiced sounds includes the acoustic aspectsith an inertial coupling to the vocal tra¢4]) and models
of a very complex tract and the dynamics involved in thethat include several masséss in[9,10).
oscillations of the vocal folds. Moreover, the dynamics can In this section we review in a qualitative way two simple
become extremely rich as soon as we integrate into the studyodels for vocal fold oscillationfgt]. The motivation behind
the effects of the coupling between the sound source and thtbese models is the convenience of framing the basic mecha-
filter [3]. In this work, we review, from the dynamical sys- nisms in simple mathematical terms and working out thresh-
tems perspective, one of the simplest models of vocal folabld conditions for the onset of oscillations in terms of param-
oscillation [4]. We analyze the bifurcation structure of its eters that could easily be compared with experimental ones.
solutions as parameters are changed. Finally, we show howBoth of them are based on the principle that vocal fold os-
combined analysis of the bifurcating solutions, enrichingcillation is induced by glottal airstream flow, and are con-
their spectral content, and a proper scaling allows us to fiteived to account for the onset of the oscillations that build
(and therefore synthesizepeech data. up from spread apart vocal folds, with no glottal closure. We
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FIG. 2. The nonuniform tissue model: a convergent glottis
FIG. 1. The elements of the one mass model. (right) and a divergent glottigleft).

bifurcations can lead, once properly filtered, to realistic out-
can think of the vocal folds as elastic masses that are pushgits.

together by the(negative pressure of the intraglottal air-

stream, but it is important to note that in order to create an

oscillatory instability the driving force has to change in al-

ternate quarter cycles. In this way, mechanical energy can be As stated in the previous section, this model assumes that

transferred to the vocal folds. the vocal folds move symmetrically, and each fold can be
The simplest possible model reflecting this mechanism ighought of as a mass subjected to a restitution force, a dissi-

known as the one mass moddl]. Each vocal fold is as- Pative force, and the driving force due to the intraglottal

sumed to be equivalent to a mass, subjected to an elasg¥essure. Therefore, its dynamics will be givem terms of

restitution force, a dissipative force, and the force due to thdS displacemenk) by

intraglottal pressurésee Fig. 1 In this model, it is possible . )

to show that the intraglottal pressure is equal to the pressure Mx"+Bx’+Kx=Pyg, CHY

at the entrance of the vocal tract. Therefore, in order to have o

oscillatory instabilities from the equilibrium position of the WhereM, B, andK represent the mass, the dissipation con-

vocal folds, we need a positive pressutarger than atmo- Stant, and the restitution constant, all per unit area. The vari-

spheri¢ when the folds are spreading apart, and a negativ@Ple Py stands for the intraglottal pressure.

pressure(smaller than atmosphejiovhen the folds are ap- ~ For the general case in which the entry glottal arag) (

proaching each other. This model will be a good approxima@nd exit glottal areag,) are different, it has been shown that

tion as long as the air, for the range of frequencies involvedthe relationship between the transglottal pressure and the in-

is mainly inert. As the vocal folds open, the flow rises andtraglottal pressure is given by

the air column gets accelerated. This implies a positive input

pressure for the vocal tract, and therefore a positive intraglot- Py=Pi+(Ps—Pi)(1—az/a;—ke)/ki, (3.2

tal pressure, which further opens the folds. This model will

be reviewed in detail in the following section, but one pointwhereP; is the input pressure at the vocal tréf and P

has to be stressed: a one mass model is not capable of dife subglottal pressure. The coefficieits andK, are phe-

playing self-oscillations without vocal tract loading. nomenological quantities accounting for the differences be-
The simplest way to achieve self-oscillations in the ab-tween the relationships between pressure and velocity ex-

sence of coupling is by assuming a nonuniform tissue strucpected for steady flows, and are known as the pressure

ture[4]. The idea is that the shape of the glottis can chang&ecovery coefficient, and transglottal pressure coefficient, re-

over a cycle, giving rise to different pressure profiles. Thisspectively[11]. Sincea;=a, in our case, an&,~0 when-

can lead to the asymmetry that we need to transfer mechangvera, is much smaller than the vocal tract aiga we get

cal energy to the folds. In Fig. 2, we display such a scenarioP; = P.

If the glottis is convergentdiverging when it is opening The last element that is needed in order to solve our dy-

(closing, the average intraglottal pressure will be positivenamical equation fok is a relationship between the driving

(negative, and therefore the motion will be enhanced. Thispressure and the intraglottal variables. Rothenbkgtg]

model constitutes a simplified version of the two mass modeshowed that, whenever the fundamental frequency is smaller

[5], an interesting one displaying quite complex behavior forthan the first resonand¢éorman) of the vocal tract, its input

Ill. THE ONE MASS MODEL

a wide region of its parameter space. impedance is mainly inertidlL2], allowing us to write
In this work, we will concentrate on the simplest model
and show that its nonlinear self-oscillatioftseated in Hopf Pi=R,U+I,U", (3.3
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where the coefficient®, and |, are the resistance and the
inertial constant and) stands for the flow. In order to pro-
ceed to form a closed dynamical system, we relate the lung
pressureP, and the input pressure by

&
g
P L~ (RU+1,U") =kpv?, (3.4) g
v

wherev stands for the velocity of the air at the glottis, i.e., ~
v=U/a. Notice that the glottal aremcan be written in terms
of the vocal fold length. and the equilibrium position of the
fold xy asa=2L(X+Xg).

Now it is possible to write the equation as a system of
three equations of first order: definiftgas

1 1 ! ! 1 1
400 600 800 1000 1200 1400 1600

P (dyn/cnr’)

F=P,— p/l2v%—2L[Ry(Xo+X)+ 5y Jv/[2L(Xo+ X)I 5],
LT plev [Ra(Xo+x) 12y Jo/[ 2L (Xo+x) 2(?35) FIG. 3. Bifurcation diagram of the one mass model. Within

region |, an attracting limit cycle represents the oscillation of the the
it reads vocal folds responsible for the production of voiced sounds.

x' =y, (3.6 stable directiongapproximately parallel to thgandv axes.
A two dimensional manifold, tangent at the fixed paiptto
y'=1M[2LRyXqv + 2L 1 ,xoF its stable manifold and to the first unstable direction de-
scribed above, separates the phase space between the basin
—(B=2LI0)y—(K=2LRpv —2LI,F)X], (3.7 of attraction of the limit cycle and the points that tend to
'—F 38 infinity. This two dimensional manifold approaches the sin-
v (38 gular plane atx=-—E, at the one dimensional curve in
Notice that this system of equations was derived under th?é\’hICh éhe numera;tor dF |s'eque}l tr? z:l:ro. In FE' 4 we ShXW
assumption that the vocal folds do not cldses is implied, a two dimensional projection of the flow on they axes.
piece of the boundary basin is displayed together with the

for example, in the relationship betwe®p and P through traiect f initial dii iaht ab i hi
a phenomenologically corrected version of Bernoulli's theo- rajectory ot an initial condition right above It, approaching
he attracting limit cycle. In Fig. 5 we display the time evo-

rem). Therefore, it is expected to help us understand the s ; 2
) P P y ution of P,=P_—1/2pv?. The line in parameter space sepa-

' havi ly fox> —Xg. : i . . ==
tem's behavior only fox X0 Jating regions | and Il indicates the Hopf bifurcation in

We are going to study the solutions of this system and . - .
their qualitative changes as parameters are vda&l The which the limit cycle is created from,>0. In other words,
in region I, the fixed point ab ;>0 is an attractor.

pressure at the lungs and the restitution conskardgre a F | d ibe th luti f the fl
sensible set of parameters to explore, since they are typically ~°F completeness, we describe the evolution of the flow
s parameters are changed, even when they are referred to

controlled by a normal speaker. . . O ; .
The fixed points are easy to find. They will all be IocatedChanges in the basin of infinity. Toward region I, the fixed

aty;=0, and will satisfy 000 . . . . :
PL—pl20—2L[Ry(Xo+X()]2;=0, (3.9 1500 | I o, ]
2LRxouxi—(K—2LRuw)x=0. (310  '™°f L S

% 500
In general there will be up to three solutions of this system,’s
yet, only two in the domain of interesxt —x), one of 2 o} |
them at a positive;=v, value, and the other at a negative ~
vi=v, value. The regions in parameter space with qualita-
tively different fixed point local stability are displayed in 44 i

Fig. 3. Although we are interested in the behavior of the I e
fixed point atv,>0, we will describe the whole flow. -1500 — oot o o v oor 006

We begin the description of the dynamical responses of
the system with region |, which is the most relevant one in
terms of voice production. In this region, the fixed point at £ 4. A two dimensional projection of the flow on thev
v1>0 is a saddle focus. It has a stable directi@pproxi-  axes. A piece of the boundary basin is displayed together with the
mately parallel to the) axis), and a two dimensional un- trajectory of an initial condition right above it, approaching the
stable manifold(associated with complex conjugate eigen-attracting limit cycle. The parameters used in this simulation are
values that feeds an attractive limit cycle. The coexisting L=0.14, M=0.04 g/cnd, k=20000.0 kdyn/crh, X,=0.06 cm,
fixed point atv,<0 is a saddle. Locally, it has a stable P=840.0 dyn/crf, r,=0.00114 g/cth, R,=3.1 dyns/cm, I,
manifold approximately parallel to the axis, and two un- =0.1 dyn$/cn®, andc=35000 cm/s.

-500 |- .

X (cm)
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FIG. 5. The time evolution of the input pressure at the vocal FIG. 7.‘ ,?htlme szr_lesl cor(;e_splcz)ndlgg &(t), where the input
tract, for the same parameters used to generate Fig. 4. pressure 1S the one displayed In F1g. 5.

point atv,<0 has two eigenvalues which become complexem lengths ;) and areasA;) [2]. ‘The input pressure;

conjugate[with associated eigenvectors almost in a pIanetgener‘"".t;S dathtif\]/ ©, Wh'cz ItS Eartlrf]illty ref(ljeclteiiharld ptartlta'ltlr)]/
parallel to the planex’,z)]. At the separatrix between re- ransmitted to the second ube that modeis the tract at the

; ; ; ; . sointerface between the first two tubes. The coefficient of re-
gions Il an.d I, an inverse Hopf blfurcapo.n takes plaqe.. theflection at this interface is given byy ,— (Ag—As)/ (A
saddle point at,<0 emits a saddle limit cycle, gaining . 7L
stability. +A,), and the transmission coefﬁ_uerttl,g by t;,=1

In summary, the one mass model predicts the appearanc_erlvz' Clear_ly, the transm|tted_wave is partially reflected at
of self-sustained oscillations as the flow is increased. Dy:[he second mterface, and partially reflected toward the third
namically, the oscillation is created in a Hopf bifurcation, tbe. At the '”terf??‘ce be.tween the last tbe and the atmo-
and therefore the solution, as the flow is increased, chang ghere, the wave is partially _reﬂected and partially emitted
its frequency and its spectral content as a nonlinear oscille{[-oward the atmo_sphere.. Callirg(t) [bp(t)] the forward
tion is established. (backward wave in the first tubeb;(t) [c,(t)] the forward
(backward wave in the second tube, amg(t) [dy(t)] the
forward (backward wave in the third tube, the equations
accounting for the boundary conditions are

Measuring the pressure fluctuations generated as a voiced
sound is produced, we see typically time series that look like a(t)=Pi(t) +by(t— ), (4.1
the one displayed in Fig. fl4]. Notice the difference be-
tween this time series and the one displayed in Fig. 5. Ac- bp(t)=rya(t—71)+t; 1Cp(t—73), (4.2)
cording to the source filter theory of voiced sounds, the dif-
ference is due to the filtering effects that occur in the vocal be(t) =ty a(t—71) +r21Ch(t—72), (4.3
tract. A series of partial reflections and transmissions happen
in different parts of it, enhancing some frequencies and sup- Cp(t)=ros(t—7;) +t3 Hp(t—73), (4.9
pressing others. The simplest model that one can conceive to
reproduce these time series consists of three tubes, of differ- Ci(t)=t, (t— 7o) + 13 dp(t—73), (4.5

IV. THE VOCAL TRACT

1 T T T T T T db(t)=aCf(t—7'3), (46)
0.8 4
where a accounts for the reflection coefficient of the inter-
face between the third tube and the atmosphai¢h no
lossesa=—1), andr; is the time that it takes a sound wave
to travel the length.; .
In Fig. 7, we display a time series corresponding #(t),
where the input pressure is the one displayed in Fig. 5. No-
U_ tice that some frequencies have been enhanced from the set
of harmonics of the original time series. As in the experi-
mental record, the initial values present a simple oscillation,
08, ™ 0 0 w0 0 s« o  Which becomes more complex as the time evolves. The rea-
1(s) son is that the time self-fluctuation at the glottis arose as a

fixed point lost its stability in a Hopf bifurcation. Therefore,

FIG. 6. The experimental record of the pressure fluctuations alts spectral content is dynamically enriched as the pressure
the mouth as the vowel “u” is pronounced in Spanish. increases.
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P (normailzed)
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FIG. 8. The evolution ofy? for a segment of 150 points of the FIG. 9. The simulation of the model with the parameters of the
experimental record displayed in Fig. 4 for the best chromosome dfiest chromosome at the tenth generation. TheseAarel.5 arb.
each generation, as a function of the generation number. units, A,=1.5 arb. units,A;=4.5 arb. units,L,;=7.0 cm, L,

=6.4 cm,L;=4.1 cm.

V. FITTING OF THE PARAMETERS

. . . . a different recordthis time corresponding to an “e” vowel,
At this point we have the basic building blocks needed to d P g

g . ) gronounced in Spanigh
reproduce a realistic voiced sound. A mass subjected 10 res- |, oy cases the equations have been rewritten rescaling

titution elastic forces, dissipation, and pressure begins to disye time. Notice that it— at the equations ruling the dy-
play self-oscillations as kinetic energy of the air is trans-namics of & x’,2) are unchanged, provided that— 2m,
ferred to mechanical energy of the mass. The oscillation i%—>ab, andl — al. In this way, we can easily generate dif-
created in a Hopf bifurcation, and as the control parametergent time series for the pressuPe with the same spectral
are moved beyond the bifurcation the attracting limit cyclecontent, but different fundamental frequency. In our simula-
enriches its spectrum due to the influence of the coexistingions, this parameter was part of the chromosome, as well as
invariant sets described above. The input pressure then digne lengths and areas of the vocal tract. We have fitted nor-
plays several supraharmonics, which are filtered by the vocahalized pressures, but the scaling of the equations allows us
tract as discussed in the previous section. In order to test the fit the amplitude oP; (and therefore of the pressure at the
model, we have devised a genetic algorithm which allows usnouth. This can be done by scalirmjn such a way that the
to find the appropriate parameters needed to reproduce egjuations remain unchanged— yz, together with L
measured signal right at the moutts]. —L/y, PL—=P_/9% b—Dbl/y?, m—my?, andk—k/ 2.

A genetic algorithm is a fitting procedure vaguely inspired
by natural selection. Given a set of parameters for a model,

its success is measured according to how similar the simula- VI. CONCLUSIONS
tion with those parameters is to the experimental record. The ] ] . .
algorithm consists of a number of iteratiofg®nerations In In this work, we have analyzed in detail a simple model

each one, the simulation of the model is performed a Iarg(feor vocal fold oscillation. The dynamical identification of the
number of times(population number each one for a set bifurcations taking place allows us to understand the time
(chromosomgeof parametersgene$. The chromosomes are

ordered according to their succe#ise most successful chro- 15 . . . T T
mosome being the set of parameters that better fits the tim

series. For the next generation, the better chromosomes are r i ;]
more likely to be chosen again, some chromosomes are dis ] H A&
carded, and new chromosomes are generated by a set of o@
erations over the better chromosomes of the previous gener&g

H H H b H thl o
tion. These operations include “crossing over” of some §

parameters between successful chromosomes and rando2

. . =9
mutation of a given parameter from a successful chromo- : }
some. a1k 4

In Fig. 8, we display the evolution of the best chromo-
some of each generation, measured byythef a segment of -5 p : - pros pres 0
150 points of the experimental record displayed in Fig. 4 and ) ) @)
the simulation, as a function of the generation number. The
simulation of the model with the parameters of the best chro- FIG. 10. The results of applying this fitting procedure to a dif-
mosome at the tenth generation is displayed in Fig. 9. In Figferent recordthis time corresponding to an “e” vowel, pronounced
10 we display the results of applying this fitting procedure toin Spanish.

~atllll
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evolution of the spectral content of voiced sounds as they are Finally, we claim that a fitting procedure of physical pa-
pronounced. The description of the invariant manifolds corameters(of eventually richer modelscan constitute an ad-
existing with the bifurcating limit cycle describing the self- ditional approach to the problem of speaker verification. This
oscillation of the folds allows us to understand its spectrais an important issue, since the current paradigm for both
evolution, as the parameters are changed. Even if this modepeaker identification and verification is based on the analy-
is an oversimplification of the rich dynamics that the vocalsjs of the statistical properties of the recorded utterance,
folds can display, we have shown that an appropriate set hrough LPC analysis, the computation of Cepstrum coeffi-
tubes modeling the vocal tract allowed us to adequately fitjents, pattern recognition applied to the Gabor transforma-
experimental observations. _ _ tion of the signal, or other techniques of spectral nafl@.
_As the parameters are changed in the simple model stuGs, e other hand, an analysis based on the reconstruction
ied here, self-oscillations are established which dynamlcall)(m,[hin a model of the parameters that are necessary to repro-
enrich th_eir spc.actlral propert_ies. These changes are SimUIt%'uce an utterance is able to distinguish the ergonomic fea-
neous with variations in their fundamental frequencies. W%ures of a speakdsuch as the typical lengths of his/her vocal

Saw that the effect of the filters is th"."t the opsgrved t'metr{;a\cﬁ from circumstantial paramete(such as the lung pres-
series can present complex features. Since realistic models re useyl

the folds can indeed present complex features at the level 0
the vocal fold oscillations, and even chdd$,6], it is im- This work was partially funded by UBA, CONICET, and
portant to know what to expect from the simplest models. Fundacion Antorchas.
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